使用python运行caffe的mnist例子

caffe从入门到放弃

Posted by 蒋为 on January 3, 2017

记录

数据

数据分成了训练集(60000张共10类)和测试集(共10000张10类),每个类别放在一个单独的文件夹里。并且将所有的图片,都生成了txt列表清单(train.txt和test.txt)

下载数据

导入caffe库,并设定文件路径

我是将mnist直接放在根目录下的,所以代码如下:

# -*- coding: utf-8 -*-

import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/'                           #根目录
train_list=root+'mnist/train/train.txt'     #训练图片列表
test_list=root+'mnist/test/test.txt'        #测试图片列表
train_proto=root+'mnist/train.prototxt'     #训练配置文件
test_proto=root+'mnist/test.prototxt'       #测试配置文件
solver_proto=root+'mnist/solver.prototxt'   #参数文件

其中train.txt 和test.txt文件已经有了,其它三个文件,我们需要自己编写。

此处注意:一般caffe程序都是先将图片转换成lmdb文件,但这样做有点麻烦。因此我就不转换了,我直接用原始图片进行操作,所不同的就是直接用图片操作,均值很难计算,因此可以不减均值。

生成配置文件

配置文件实际上就是一些txt文档,只是后缀名是prototxt,我们可以直接到编辑器里编写,也可以用代码生成。此处,我用python来生成。

#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
    #第一层,数据输入层,以ImageData格式输入
    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
        transform_param=dict(scale= 0.00390625))
    #第二层:卷积层
    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #卷积层
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #全连接层
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
    #激活函数层
    relu3=L.ReLU(fc3, in_place=True)
    #全连接层
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
    #softmax层
    loss = L.SoftmaxWithLoss(fc4, label)
    
    if include_acc:             # test阶段需要有accuracy层
        acc = L.Accuracy(fc4, label)
        return to_proto(loss, acc)
    else:
        return to_proto(loss)
    
def write_net():
    #写入train.prototxt
    with open(train_proto, 'w') as f:
        f.write(str(Lenet(train_list,batch_size=64)))

    #写入test.prototxt    
    with open(test_proto, 'w') as f:
        f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))

配置文件里面存放的,就是我们所说的network。我这里生成的network,可能和原始的Lenet不太一样,不过影响不大。

生成参数文件solver

同样,可以在编辑器里面直接书写,也可以用代码生成。

#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
    s=proto.caffe_pb2.SolverParameter()
    s.train_net =train_net
    s.test_net.append(test_net)
    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试  
    s.test_iter.append(100)  #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试
    s.max_iter = 9380       #10 epochs , 938*10,最大训练次数
    s.base_lr = 0.01    #基础学习率
    s.momentum = 0.9    #动量
    s.weight_decay = 5e-4  #权值衰减项
    s.lr_policy = 'step'   #学习率变化规则
    s.stepsize=3000         #学习率变化频率
    s.gamma = 0.1          #学习率变化指数
    s.display = 20         #屏幕显示间隔
    s.snapshot = 938       #保存caffemodel的间隔
    s.snapshot_prefix =root+'mnist/lenet'   #caffemodel前缀
    s.type ='SGD'         #优化算法
    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速
    #写入solver.prototxt
    with open(solver_file, 'w') as f:
        f.write(str(s))

开始训练模型

训练过程中,也在不停的测试。

#开始训练
def training(solver_proto):
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver = caffe.SGDSolver(solver_proto)
    solver.solve()
#最后,调用以上的函数就可以了。

if __name__ == '__main__':
    write_net()
    gen_solver(solver_proto,train_proto,test_proto) 
    training(solver_proto)
	
	
	

训练部分完成的python文件

mnist.py

 
 # -*- coding: utf-8 -*-

import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/'                           #根目录
train_list=root+'mnist/train/train.txt'     #训练图片列表
test_list=root+'mnist/test/test.txt'        #测试图片列表
train_proto=root+'mnist/train.prototxt'     #训练配置文件
test_proto=root+'mnist/test.prototxt'       #测试配置文件
solver_proto=root+'mnist/solver.prototxt'   #参数文件

#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
    #第一层,数据输入层,以ImageData格式输入
    data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
        transform_param=dict(scale= 0.00390625))
    #第二层:卷积层
    conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #卷积层
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
    #池化层
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    #全连接层
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
    #激活函数层
    relu3=L.ReLU(fc3, in_place=True)
    #全连接层
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
    #softmax层
    loss = L.SoftmaxWithLoss(fc4, label)
    
    if include_acc:             # test阶段需要有accuracy层
        acc = L.Accuracy(fc4, label)
        return to_proto(loss, acc)
    else:
        return to_proto(loss)
    
def write_net():
    #写入train.prototxt
    with open(train_proto, 'w') as f:
        f.write(str(Lenet(train_list,batch_size=64)))

    #写入test.prototxt    
    with open(test_proto, 'w') as f:
        f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))

#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
    s=proto.caffe_pb2.SolverParameter()
    s.train_net =train_net
    s.test_net.append(test_net)
    s.test_interval = 938    #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试  
    s.test_iter.append(500)  #50000/100 测试迭代次数,需要迭代500次,才完成一次所有数据的测试
    s.max_iter = 9380       #最大迭代次数
    s.base_lr = 0.01    #基础学习率
    s.momentum = 0.9    #动量
    s.weight_decay = 5e-4  #权值衰减项
    s.lr_policy = 'step'   #学习率变化规则
    s.stepsize=3000         #学习率变化频率
    s.gamma = 0.1          #学习率变化指数
    s.display = 20         #屏幕显示间隔
    s.snapshot = 938       #保存caffemodel的间隔
    s.snapshot_prefix = root+'mnist/lenet'   #caffemodel前缀
    s.type ='SGD'         #优化算法
    s.solver_mode = proto.caffe_pb2.SolverParameter.GPU    #加速
    #写入solver.prototxt
    with open(solver_file, 'w') as f:
        f.write(str(s))
  
#开始训练
def training(solver_proto):
    caffe.set_device(0)
    caffe.set_mode_gpu()
    solver = caffe.SGDSolver(solver_proto)
    solver.solve()
#
if __name__ == '__main__':
    write_net()
    gen_solver(solver_proto,train_proto,test_proto) 
    training(solver_proto)
 
 

我将此文件放在根目录下的mnist文件夹下,因此可用以下代码执行

sudo python mnist/mnist.py

在训练过程中,会保存一些caffemodel。多久保存一次,保存多少次,都可以在solver参数文件里进行设置。

另外,如果caffe是only cpu模式,需要修改生产的solve参数文件设置为cpu模式,另外,需要将运行代码中的 caffe.set_device(0) caffe.set_mode_gpu() 注释掉

我设置为训练10 epoch,9000多次,测试精度可以达到99%

生成deploy文件

如果要把训练好的模型拿来测试新的图片,那必须得要一个deploy.prototxt文件,这个文件实际上和test.prototxt文件差不多,只是头尾不相同而也。deploy文件没有第一层数据输入层,也没有最后的Accuracy层,但最后多了一个Softmax概率层。

这里我们采用代码的方式来自动生成该文件。

deploy.py

# -*- coding: utf-8 -*-

from caffe import layers as L,params as P,to_proto
root='/home/xxx/'
deploy=root+'mnist/deploy.prototxt'    #文件保存路径

def create_deploy():
    #少了第一层,data层
    conv1=L.Convolution(bottom='data', kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
    pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
    pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
    fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
    relu3=L.ReLU(fc3, in_place=True)
    fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
    #最后没有accuracy层,但有一个Softmax层
    prob=L.Softmax(fc4)
    return to_proto(prob)
def write_deploy(): 
    with open(deploy, 'w') as f:
        f.write('name:"Lenet"\n')
        f.write('input:"data"\n')
        f.write('input_dim:1\n')
        f.write('input_dim:3\n')
        f.write('input_dim:28\n')
        f.write('input_dim:28\n')
        f.write(str(create_deploy()))
if __name__ == '__main__':
    write_deploy()
	
	

运行该文件后,会在mnist目录下,生成一个deploy.prototxt文件。

这个文件不推荐用代码来生成,反而麻烦。大家熟悉以后可以将test.prototxt复制一份,修改相应的地方就可以了,更加方便。

用训练好的模型(caffemodel)来分类新的图片

经过前面两篇博文的学习,我们已经训练好了一个caffemodel模型,并生成了一个deploy.prototxt文件,现在我们就利用这两个文件来对一个新的图片进行分类预测。

我们从mnist数据集的test集中随便找一张图片,用来进行实验。

#coding=utf-8

import caffe
import numpy as np
root='/home/xxx/'   #根目录
deploy=root + 'mnist/deploy.prototxt'    #deploy文件
caffe_model=root + 'mnist/lenet_iter_9380.caffemodel'   #训练好的 caffemodel
img=root+'mnist/test/5/00008.png'    #随机找的一张待测图片
labels_filename = root + 'mnist/test/labels.txt'  #类别名称文件,将数字标签转换回类别名称

net = caffe.Net(deploy,caffe_model,caffe.TEST)   #加载model和network

#图片预处理设置
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})  #设定图片的shape格式(1,3,28,28)
transformer.set_transpose('data', (2,0,1))    #改变维度的顺序,由原始图片(28,28,3)变为(3,28,28)
#transformer.set_mean('data', np.load(mean_file).mean(1).mean(1))    #减去均值,前面训练模型时没有减均值,这儿就不用
transformer.set_raw_scale('data', 255)    # 缩放到【0,255】之间
transformer.set_channel_swap('data', (2,1,0))   #交换通道,将图片由RGB变为BGR

im=caffe.io.load_image(img)                   #加载图片
net.blobs['data'].data[...] = transformer.preprocess('data',im)      #执行上面设置的图片预处理操作,并将图片载入到blob中

#执行测试
out = net.forward()

labels = np.loadtxt(labels_filename, str, delimiter='\t')   #读取类别名称文件
prob= net.blobs['Softmax1'].data[0].flatten() #取出最后一层(Softmax)属于某个类别的概率值,并打印
print prob
order=prob.argsort()[-1]  #将概率值排序,取出最大值所在的序号 
print 'the class is:',labels[order]   #将该序号转换成对应的类别名称,并打印

最后输出 the class is : 5

分类正确。

如果是预测多张图片,可把上面这个文件写成一个函数,然后进行循环预测就可以了。

参考博文

http://www.cnblogs.com/denny402/p/5685909.html