大数据去重之布隆过滤器

布隆过滤器

Posted by 木木的木头 on March 4, 2019

什么是布隆过滤器

本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构(probabilistic data structure),特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存在或者可能存在”。

相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。

实现原理

HashMap 的问题

讲述布隆过滤器的原理之前,我们先思考一下,通常你判断某个元素是否存在用的是什么?应该蛮多人回答 HashMap 吧,确实可以将值映射到 HashMap 的 Key,然后可以在 O(1) 的时间复杂度内返回结果,效率奇高。但是 HashMap 的实现也有缺点,例如存储容量占比高,考虑到负载因子的存在,通常空间是不能被用满的,而一旦你的值很多例如上亿的时候,那 HashMap 占据的内存大小就变得很可观了。

还比如说你的数据集存储在远程服务器上,本地服务接受输入,而数据集非常大不可能一次性读进内存构建 HashMap 的时候,也会存在问题。

布隆过滤器数据结构

布隆过滤器是一个 bit 向量或者说 bit 数组,长这样:

如果我们要映射一个值到布隆过滤器中,我们需要使用多个不同的哈希函数生成多个哈希值,并对每个生成的哈希值指向的 bit 位置 1,例如针对值 “baidu” 和三个不同的哈希函数分别生成了哈希值 1、4、7,则上图转变为:

Ok,我们现在再存一个值 “tencent”,如果哈希函数返回 3、4、8 的话,图继续变为:

值得注意的是,4 这个 bit 位由于两个值的哈希函数都返回了这个 bit 位,因此它被覆盖了。现在我们如果想查询 “dianping” 这个值是否存在,哈希函数返回了 1、5、8三个值,结果我们发现 5 这个 bit 位上的值为 0,说明没有任何一个值映射到这个 bit 位上,因此我们可以很确定地说 “dianping” 这个值不存在。而当我们需要查询 “baidu” 这个值是否存在的话,那么哈希函数必然会返回 1、4、7,然后我们检查发现这三个 bit 位上的值均为 1,那么我们可以说 “baidu” 存在了么?答案是不可以,只能是 “baidu” 这个值可能存在。

这是为什么呢?答案跟简单,因为随着增加的值越来越多,被置为 1 的 bit 位也会越来越多,这样某个值 “taobao” 即使没有被存储过,但是万一哈希函数返回的三个 bit 位都被其他值置位了 1 ,那么程序还是会判断 “taobao” 这个值存在。

支持删除么

目前我们知道布隆过滤器可以支持 add 和 isExist 操作,那么 delete 操作可以么,答案是不可以,例如上图中的 bit 位 4 被两个值共同覆盖的话,一旦你删除其中一个值例如 “tencent” 而将其置位 0,那么下次判断另一个值例如 “baidu” 是否存在的话,会直接返回 false,而实际上你并没有删除它。

概率推导

误判率 误判率就是在插入n个元素后,某元素被判断为“可能在集合里”,但实际不在集合里的概率,此时这个元素哈希之后的k个比特位置都被置为1。

假设哈希函数等概率地选择每个数组位置,即哈希后的值符合均匀分布,那么每个元素等概率地哈希到位数组的m个比特位上,与其他元素被哈希到哪些位置无关(独立事件)。设定数组总共有m个比特位,有k个哈希函数。在插入一个元素时,一个特定比特没有被某个哈希函数置为1的概率是:

插入一个元素后,这个比特没有被任意哈希函数置为1的概率是:

在插入了n个元素后,这个特定比特仍然为0的概率是:

所以这个比特被置为1的概率是:

现在检测一个不在集合里的元素。经过哈希之后的这k个数组位置任意一个位置都是1的概率如上。这k个位置都为1的概率是:

哈希函数个数的最优解 对于给定的m和n,让“误报率”最小的k值为:

此时“误报率”为:

可以简化为: